
Lesson 6
Comparison Operators

csinschools.com

1 2 3

Learning objectives
By the end of this lesson, you should be able to:

● understand a variety of comparison operators

● write conditional statements using comparison operators

● understand how to apply the or operator to check multiple conditional

statements

2

Revision: while
Connect to the micro:bit

m1 = Micro_bit()

// Enter a loop

keep_going = true

while keep_going == True:

 # Get state of button A

 buttonA = m1.getButtonA()

 buttonB = m1.getTheButtonB()

 Primt("A: " + str(btnA) + ", B: "+str(btnB))

 # So the loop doesn’t spam

 sleep(0.5)

Can you spot the 5 errors in this
code?

Revision: while
Connect to the micro:bit

m1 = Micro_bit()

// Enter a loop

keep_going = true

while keep_going == True:

 # Get state of button A

 buttonA = m1.getButtonA()

 buttonB = m1.getTheButtonB()

 Primt("A: " + str(btnA) + ", B: "+str(btnB))

 # So the loop doesn’t spam

 sleep(0.5)

Can you spot the 5 errors in this
code?

Micro_bit() → Microbit()

// → #

true → True

.getTheButtonB() → getButtonB()

Primt → print

Revision: while
Connect to the micro:bit

m1 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get state of button A

 buttonA = m1.getButtonA()

 buttonB = m1.getButtonB()

 print("A: " + str(btnA) + ", B: "+str(btnB))

 # So the loop doesn’t spam

 sleep(0.5)

Why do we now use while
instead of label and goto?

Revision: while
Connect to the micro:bit

m1 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get state of button A

 buttonA = m1.getButtonA()

 buttonB = m1.getButtonB()

 print("A: " + str(btnA) + ", B: "+str(btnB))

 # So the loop doesn’t spam

 sleep(0.5)

Why do we now use while
instead of label and goto?

● To prevent spaghetti code!

Input Output Processing Communication

Your computer Keyboard
Mouse
Touch screen
Microphone

Monitor/Screen
Speakers

CPU
Graphics cards

Wifi
Bluetooth
Ethernet

Your Microbit Buttons
Thermometer
Accelerometer
Magnetometer
Touch sensor
Light sensor

25 x LED lights
Speakers

Bluetooth
Radio

● Today we will be using the following inputs and outputs:

7

Today’s Inputs and Outputs
Not used yet

Used
New

Comparison Operators
● Comparison operators are usually used in

code to compare numbers

● You may have used these in maths!

● On the next slide, we have some commonly
used comparison operators, and we will go
through how they work

Comparison Operators: equal to (==)
● This is the symbol for equal to: ==

● It checks if the value on the left is the same as the value on the right

● Is 14 the same as 14? Yes - True!

14 == 14

Comparison Operators: not equal to (!=)
● This is the symbol for not equal to: !=

● It checks if the value on the left is not equal to the value on the right

● Is 18 not equal to 14? Yes - True!

18 != 14

Comparison Operators: == and !=
● Look at the statements below, and decide whether they are True or False

12 == 11 True / False 11 != 11 True / False

90 == 92 True / False 19 != 52 True / False

30 == 30 True / False 36 != 36 True / False

42 == 39 True / False 22 != 89 True / False

Comparison Operators: == and !=
● Look at the statements below, and decide whether they are True or False

12 == 11 True / False 11 != 11 True / False

90 == 92 True / False 19 != 52 True / False

30 == 30 True / False 36 != 36 True / False

42 == 39 True / False 22 != 89 True / False

Comparison Operators: greater than (>)
● This is the symbol for greater than: >

● It checks if the value on the left is greater than the value on the right

● Is 18 greater than 12? Yes - True!

18 > 12

Comparison Operators: less than (<)
● This is the symbol for less than: <

● It checks if the value on the left is less than the value on the right

● Is 14 less than 22? Yes - True!

14 < 22

Comparison Operators: > and <
● Look at the statements below, and decide whether they are True or False

12 > 11 True / False 10 < 11 True / False

90 > 92 True / False 99 < 52 True / False

12 > 30 True / False 14 < 36 True / False

42 > 39 True / False 22 < 89 True / False

Comparison Operators: > and <
● Look at the statements below, and decide whether they are True or False

12 > 11 True / False 10 < 11 True / False

90 > 92 True / False 99 < 52 True / False

12 > 30 True / False 14 < 36 True / False

42 > 39 True / False 22 < 89 True / False

Comparison Operators: greater than or equal to (>=)
● This is the symbol for greater than or equal to: >=

● It checks if the value on the left is greater than or equal to the value on the

right

● Is 18 greater than or equal to 12? Yes, greater than - True!

18 >= 12

Comparison Operators: less than or equal to (<=)
● This is the symbol for less than or equal to: <=

● It checks if the value on the left is less than or equal to the value on the right

● Is 14 less than or equal to 22? Yes, less than - True!

14 <= 22

Comparison Operators: >= and <=
● Look at the statements below, and decide whether they are True or False

10 >= 11 True / False 19 <= 11 True / False

92 >= 92 True / False 19 <= 52 True / False

12 >= 30 True / False 36 <= 36 True / False

42 >= 39 True / False 22 <= 89 True / False

Comparison Operators: >= and <=
● Look at the statements below, and decide whether they are True or False

10 >= 11 True / False 19 <= 11 True / False

92 >= 92 True / False 19 <= 52 True / False

12 >= 30 True / False 36 <= 36 True / False

42 >= 39 True / False 22 <= 89 True / False

Comparison Operators
● Python uses comparison operators as part of

if statements and while loops

● We can use them in our code to run certain
sections of code when certain conditions are
met

● An example of this is a fall detector

Comparison Operators
● Remember the accelerometer?

● This gave us the acceleration on our micro:bit in
the X, Y and Z directions

● When the device is resting on the table, LED
screen up, the acceleration in the Z direction is
negative (less than 0)

● We can use this fact to write a program to
detect when the micro:bit is upside down

https://docs.google.com/document/d/1B2fnbhhhR5W5wjBKiqe2NSGp5V9byxRG2u3gOWY62CA/edit#heading=h.gjbvwno8v42w

Demo: Fall Detector

23

Fall Detector

https://csinschools.io/inter-micro/0601d

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Connecting to the micro:bit

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Set keep_going to be True

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Here we enter the while loop,

because keep_going is True

● This means the code indented

and underneath will run

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● What is happening in these

sections of code?

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● What is happening in these

sections of code?

○ Getting the Z axis

acceleration and storing it

inside accZ

○ Print to the console what

is stored inside accZ

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● In this line of code, Python is

checking to see if the

acceleration is greater than 0

● When the device is sitting on

the table, LED screen up, the

value of accZ is approximately

-9.6 m/s2

● Is this great than 0?

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● In this line of code, Python is

checking to see if the

acceleration is greater than 0

● When the device is sitting on

the table, LED screen up, the

value of accZ is approximately

-9.6 m/s2

● Is this great than 0? False!

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Is accZ greater than 0?

False!

● So now the code will sleep

and then return to the top of

our while loop

● Why doesn’t the code

indented and underneath the

if statement run?

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Is this great than 0? False!

● So now the code will sleep

and then return to the top of

our while loop

● Why doesn’t the code

indented and underneath the

if statement run? - Because

the answer to the condition

was False!

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Will the loop run again?

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Will the loop run again?

● Yes - because keep_going is

still True!

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● So we update accZ

● and print it to the user

● Now this time, suppose the

micro:bit is upside down, so:

accZ = +9.64

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● So we update accZ

● and print it to the user

● Now this time, suppose the

micro:bit is upside down, so:

accZ = +9.64

● Now, is this True?

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● So we update accZ

● and print it to the user

● Now this time, suppose the

micro:bit is upside down, so:

accZ = +9.64

● Now, is this True? Yes - the

code indented and underneath

will run

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Now keep_going will be set

to False, and the micro:bit will

call for help!

Comparison in Code
Connect to the micro:bit

r2d2 = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get acceleration in Z direction

 accZ = r2d2.getAccelerometerZ()

 # Show current acceleration

 print("Z: " + str(accZ))

 # Check if the acceleration is greater than 0

 # This means the device is upside down!

 if accZ > 0:

 keep_going = False

 say("Help!")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Now keep_going will be set

to False, and the micro:bit will

call for help!

● It will then sleep, and the loop

will end because keep_going

is now False

Activity Time!

Exercise 1: Fixing A Fall Detector

42

Activity 06.01

https://csinschools.io/inter-micro/0601e

Exercise 2: X Tilt Checker

43

Activity 06.02

https://csinschools.io/inter-micro/0602e

Exercise 3: Y Tilt Checker

44

Activity 06.03

https://csinschools.io/inter-micro/0603e

Demo: A or B

45

A or B

https://csinschools.io/inter-micro/0602d

or
● or is used in Python to check for multiple

conditions

● or works the same way in Python as making a
choice in real life
○ Imagine you are hungry
○ You can eat a sandwich or some fruit, (or

both) but the outcome is the same either way
○ Your hunger is satisfied

46

or
● or can be used in while loops or if

statements to produce the same outcome for
more than one condition

● Imagine we have the line of code:

if num > 6 or num < 0:

● This would run if num was greater than 6, or
less than 0

47

or in Code
Connect to the micro:bit

linda = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get button presses

 btnA = linda.getButtonA()

 btnB = linda.getButtonB()

 # Tell user they have pressed a button

 if btnA > 0 or btnB > 0:

 print("Button Pressed")

 # Sleep so the program doesn't spam

 sleep(0.25)

● This is the code from the
demo you just looked at

● What did the demo program
do?

or in Code
Connect to the micro:bit

linda = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get button presses

 btnA = linda.getButtonA()

 btnB = linda.getButtonB()

 # Tell user they have pressed a button

 if btnA > 0 or btnB > 0:

 print("Button Pressed")

 # Sleep so the program doesn't spam

 sleep(0.25)

● This is the code from the
demo you just looked at

● What did the demo program
do?

● It should have printed
“Button Pressed” whenever
you pressed button A or
button B

or in Code
Connect to the micro:bit

linda = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get button presses

 btnA = linda.getButtonA()

 btnB = linda.getButtonB()

 # Tell user they have pressed a button

 if btnA > 0 or btnB > 0:

 print("Button Pressed")

 # Sleep so the program doesn't spam

 sleep(0.25)

● This functionality came
from this line of code

or in Code
Connect to the micro:bit

linda = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get button presses

 btnA = linda.getButtonA()

 btnB = linda.getButtonB()

 # Tell user they have pressed a button

 if btnA > 0 or btnB > 0:

 print("Button Pressed")

 # Sleep so the program doesn't spam

 sleep(0.25)

● This functionality came
from this line of code

● We know that the btnA and
btnB variables will be 1
when the button is pressed,
so by checking if they are
greater than 0, we know if
they were pressed

or in Code
Connect to the micro:bit

linda = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get button presses

 btnA = linda.getButtonA()

 btnB = linda.getButtonB()

 # Tell user they have pressed a button

 if btnA > 0 or btnB > 0:

 print("Button Pressed")

 # Sleep so the program doesn't spam

 sleep(0.25)

● Notice we have two full
conditional statements:

btnA > 0 or btnB > 0

● We did not write:

btnA or btnB > 0

● The above line of code will
not work!

or in Code
Connect to the micro:bit

linda = Microbit()

Enter a loop

keep_going = True

while keep_going == True:

 # Get button presses

 btnA = linda.getButtonA()

 btnB = linda.getButtonB()

 # Tell user they have pressed a button

 if btnA > 0 or btnB > 0:

 print("Button Pressed")

 # Sleep so the program doesn't spam

 sleep(0.25)

● We can use or as many
times as we like in one if
statement or while loop

● Now it’s time for you to try
it!

Activity Time!

Exercise 4: Don’t Hurt Micro

55

Activity 06.04

https://csinschools.io/inter-micro/0604e

Worksheet: Input → Process → Output

56

WorksheetSee lesson 4 for a
reminder on IPOs

https://csinschools.io/inter-micro/6w
https://docs.google.com/presentation/d/1E6SYf5FPq05sC-TKtOGtlO0VLlTAdWLxl37Xbsf7KNE/#slide=id.g1354db35af4_0_0

Summary

57

● > checks if the number on the left is greater than the right

● < checks if the number on the left is less than the right

● >= checks if the number on the left is greater than or equal

to the right

● <= checks if the number on the left is less than or equal to

the right

● or can be used to check multiple conditional statements

in one line of code

License Information
These CS in Schools lessons plans, worksheets, and other materials
were created by the CS in Schools team. They are licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.

Images all taken from Flaticon.

58

https://csinschools.io/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.flaticon.com/

